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A finite-difference method is used to solve a problem with a singularity O<x<d, —o <y <0, 1>0);

in the solution. A scheme suitable for describing the behavior of the .

solution near the singularity is constructed. Ttlemo = 0: ™
Tileco =TS9 ; ®)

In the numerical solution of problems of mathema-

tical physics by finite-difference methods it is usual Tily——o = Tlymto; (9)

to make use of the smoothness of the functions con- Py Qﬂ - 0T, (10)

sidered. Disturbance of smoothness near singular ! 0 ly—0 = Oy =0

points makes it necessary to use special methods in
order to avoid making the mesh interval too fine. One
such method, the isolation of singularities, has been
discussed by E. A. Volkov in relation to the example
of elliptic equations [1, 2].

In this paper we describe a somewhat different
approach to the isolation of singularities. We note
that the method is not restricted to the problem con-
sidered but may be extended to a more general case.

We will consider the problem of heat conduction in
a solid bathed on one side by a laminar flow, it being
assumed that a homogeneous condition of the second
kind is satisfied on the other boundaries adjacent to
the flow surface. The simplest of such problems has
the following form:

In what follows dimensionless quantities will be
used exclusively.

We will investigate the singularity occurring close
to X =0, y = 0 when the behavior of the solution with
respect to T is sufficiently slow and smooth and mo-
tion does not have an important influence on the be~
havior of the solution with respect to (X, 7).

Moreover, for simplicity we assume that Q(x,y) =
=0 in a certain neighborhood of the point (0, 0).

Introducing polar coordinates in the body {y > 0)
and using a Mellin transformation with respect to r
to describe the relation between the temperature of
the surface y = 0 and the heat flow through it (since
our treatment is a local one, we can confine ourselves
to the region 0 =T =7, specifying some boundary

T, *RT °T condition at T = Ty), and also applying Mellin trans-
—- = ) s = 2 Y T 1 . . -
GPS dr ¢ ( dx? + dy* ) +Qx T () formation with respect to X to the relation
O<x<d, 0<y <« +R; 1>0) oox —
Tylemo = 0; @ T le= Nj G—E )‘—é%l’—’ _dT (N =0.512039K,),
T | o 3 § Yy ly=o
Ox  ly—o we establish that in the body close to (0, 0} the solu~
a7, o @ tion has an asymptotic form (Table 1)
0 ly=a _ - Intz
oT Ts =Z Cn,kRe( 2i's nkz ) . (11
?“s —< = -——L](X) exp (—ﬁT)—GTs]y:R, (5) n ok ! 3
0y |y=R
T oTy T} | X As distinet from [2] we will construct schemes
cop | =L +u—L) =1 v u = My, {6) . - -
0t dx ay? with low connectivity, whose coefficients are found
Table 1
Coefficients &’}
Values of ¢y g at n =
Values
of k 0 1 2 3 4 5 6 7 8
) 0.419615 —
o | %alo0 0.932478.50,0 0 0_A29‘775/5,C[L0 0 oo ol T K,
K K3 0.0179552.
— T G,
Kg 0.0
0.123326_ 0.0517492_
I 0 |0 0 0 0 0 P ool O TR G

) The coefficients cgi, ¢ are arbitrary.
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Table 2

Coefficients of difference scheme 4;; (B;;--2—4;)

Values of Ajjati=
Values
of j 0 1 2 3 4
0 —2 0.612752 0.934496 0.971136 0.983786
1 1.3872 0.7839 0.5514 1.1643 1.0226
2 2.0655 1.0009 0.9407 0.9617 0.8536

from the condition that these eqguations must be sa-
tisfied by the asymptotic solution obtained.

Naturally, the number of parameters in each of the
difference equations must correspond with the number
of terms retained in the asymptotic expansion. In ad-
dition, certain requirements ensuring the stability of
the difference scheme must also be satisfied, the
description of the solution under other conditions must
be at least qualitatively correct, etc. When the number
of parameters in the difference equation and the num-
ber of terms retained in the asymptotic expansion
correspond exactly, all these requirements will not
always be satisfied and should therefore be imposed in
advance in the form of equalities or inequalities, which
may be added, where necessary, to the asymptotic
conditions. In this case it may be necessary to in-
crease the connectivity of the difference scheme.

On the other hand, if there is a possibility of esti-
mating the error, it is possible to require its minimi-
zation in a suitable class of functions, which may
sometimes lead to sufficiently good results even in
the case of low connectivity.

For Eq. (1) with conditions (2)~(5) we shall find
schemes on a square net (Xj = ili, ¥; = jhg), which
would be satisfied by asymptotic expression (11). We
shall confine ourselves to five-point schemes in which
the nonzero coefficients of values of Ty; are nonzero
at not more than five points, like the simplest approx-
imation of the Laplace operator. If the problem is
solved for some fixed value of K,, it is necessary to
find the scheme for which the solutions are determined
in accordance with (11) with ¢.g=1, Cpg= 0; Gy =0,
Cgn = 1, etc. However, if it is required that the
scheme be satisfied at arbitrary K, from some region,
it is necessary that any term of (11), however remote,
be an exact solution. In order to retain the qualitative
characteristics of ordinary elliptic net equations it is
required that the scheme also be exact for the func-
tions X, ¥ and X2 + y2 as well as the first two terms of
(11). Thus, for the coefficients of a scheme of the
form

@i Tic+ b0 Toj 46 Tigrj +
+ i T+, T =g (12)
we obtain the equations
G+ byt +dijte; =0,
B (6 —Daw; +ibij+ @+ Doy +idij +ie] =0,
h [jas,i + ibi; + jeri + (G — 1 di + G+ De] =0,

L

L1

/s {ai,i [€ — 1) + j*}*/> cos % arc ctg

b (@ 4 Pyocos—are otg - e (0130
12
. 2 i
+ 2] cos — Xarc ctg —4—
7 3 i

i—1,

BE

A4 i [+ (G — D] cos % arc ctg

ey [+ GG 1P)cos = are ctg 1]
i

=0,

——

B2 {ans [ — 12 4 P 4 by @+ 1) 4+ [ 4 17 + 7] +
Fd [ G ey [P G+ 1P =4, (19
which give
ai; = G, = Auj/2h2,
di,;j = e,; = By ;/20h2,
—hZb;;=2(Ai; + Bij) =4, (14)

or in dimensionless form

3 f . 9
Ai=2 {[lz + i+ 1)2}1/3 cos -3—@i,i+1 —
L

/ 2
— 2(i2+1'2)"‘°’cos—3 @l
. 2 VO e 2
+(i— 17 €08 — @ppmf {1+ (G + 1)~x"3cos?pi,,-+1-
)1

— -1+ ]-glwe cos %(PHL]' 4[24 — 1)211,’3 «

j—1

372 o5 2 Q-1 . (1)
3 j

2 . .
X Cosf,:‘,_q)i,j—l — =12+ 2

where

(p[;]- —arcetg L -
L

In this case as the boundary condition at X = 0 we can

take T_y,j = Ty, and substitute in (15) with i =0,

excluding Topy from consideration. Close to the line
iy ;
2 ( "

;

w =)
 ffe |
Q.‘ll(“

— =t —9 t
= arc
which g'l ves

- tgfgi = 2.41355,

SRy

in which relation (15) may lead to a large difference
between Ki, j and Ei,j and even to their hdving dif-
ferent signs, which distorts the qualitative descrip-
tion of the process. However, this is due to the fact
that the second differences of the function r~¥° -

*cos (2/8)¢ close to this line are small and, consequently,
where the deviation of A, j and Ei,j from unity is large
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at not very small ¥, it is possible to replace them by
unity without a serious increase in the error. The
results of calculating A, j from (15) are presented in
Table 2.

Since the coincidence of the signs of A and B is
disturbed at the point (0, 0), we will not construct a
five-point equation for it, but replace TOS,O with TOS,I
or Tfy, using the first terms of (11). In the equations
containing TOS,O it is eliminated by means of this expres-—
sion, which involves a change in the structure of
scheme (12).

We will confine ourselves to the case when the -
behavior of the solution is exponential in time (such
solutions can subsequently be used for describing
processes of a more general type) T X, ¥, T) =
= T(x, y) exp (B, 7). Then it is easy fo see that in the
body all the basic calculations involving the asymptotic
expression will be correct for terms up to ¢4, if it is
possible to neglect the motion in the fluid,

In order to examine the process in the fluid it is
convenient to introduce the self-similar coordinate
system [3]

— — — _ 173
n=x, E=y/x . (16)

Equation (6) takes the form

= an 62Tf 1 2 an —2/3
an o8 3% ot S
(0<n<l, —oo<E<0). (17

In order to construct a scheme for parabolic equa-
tion (17}, using the ideas of [3], we require that it be
exact for solutions of the form

3 = — -
Qo (8 1 /CP,Q/;, &) n2/3 @y (), Where

2

- - - F:
Ly gi(8) =159, (B); Lg=732——

with the boundary condition ¢;{—= = 0. As a resuit,
for {17) we obtain the scheme

SN 1 (i) — Ty ()] = L [y () Ty () +

he
+ (1= (M) T ()], (18)
where
- 1 - -
vmagw%m=
—2/3 _2/3
he MNit Ni-+1 .
SR\ T s T T
N — Mt N — MNit1 ’

L7 is the ordinary difference approximation of the
operator L with interval hy .
The addition to LE in Eq. (17) is represented in the
form
_ Y3 _ _2/3 _
g, e Tr(n) + et T ()
' 2

To satisfy the conditions (9) and (10) we proceed as
follows. We extrapolate Ty toZ =+h7, Tgtoy = —hy
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on the line X = 7 = ihg = ihz; we represent Tg and Ty,
respectively, in the form

23

Ty =my+myr COS%q}, (18a)

Ty =ty +ms &+ m4-§2. (18b)

(The coefficients m; are different for each X =7). We
require the satisfaction of {18a) af the point y = +hy
and (18b) at the point ¢ = 0 and £ = +hF. To these five
equations we add Eq. (12) for (i, 0) and the relation

— =0.

—=ih—
K 1

273
(LE Tf + K1 ¥ Tf)

E=0

We also add the two requirements on the coefficients
m; following from {9) and (10). Eliminating from these
relations my, fo. Tl ., Ti_i, we obtain the five-
point equation

_1 _% i+
KzDzh’g—"’li

1 [5-2 — C.
—_—— hy — 2A; 2 Tf,-}-(_—‘—l) ;1 —
By P - S } "D,

Y
[ Kl hgn[ . 1
2K D KyDhsn

L0 (T?—l, o~ Tig, o) =0, (19)

i.0

G (<)
7, 3

Colf o

-1

2
X |:(i2 + 1)1/3 (cos —g— Py —1 — COS ?cpi, 1 )] , (20

-1

(20a)

for i =1, it being necessary to eliminate T()S,Q ati=1.
It is not necessary to calculate Tgs w and Tyl= o in the
process of solving the finite~-difference problem. This
is necessary only for the subsequent investigation of
the transfer process. We note that remote from the
point (0, 0) it is possible to use ordinary methods for
approximating the differential equations. An actual
application of the schemes developed above will be
described in connection with the investigation of a
boundary-value transport problem.

NOTATION

Cg, Ps> Mgy gy Cps Pfs Ag ar are the specific heat,
density and the coefficients of thermal conductivity and
thermal diffusivity of solid and fluid, respectively;
Tg, Ty are the temperatures of the solid and fluid;
d is the longitudinal dimension of body; R is the trans-
verse dimension of the body, u is the fluid velocity;
M is a constant; X =x/d, ¥ = y/d are dimensionless
variable coordinates in the body; == %1 is dimension-
less time; 7=V %@ +y°; 7=1, E= gz *are self-similar
2

5 is the
2/3 a}/3 43,

. . iy = d
dimensionless coordinates in the fluid; 3=
dimensionless relative cooling rate; K;=a;3/M
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Ky=cspsasley #; a?lle/a d%? are the dimensionless com-
plexes; i is the numbering of nodes of finite~dif-
ference scheme in the body with respect to X and in
the fluid with respect to1; j is the numbering of nodes
of net in the body with respect to ¥ and in the fluid
with respect to £; - = h-—T, is the dimensionless
mesh interval in the body; hiy, hf are the dimension—
less intervals with respect to 77 and T in the fluid;
Z=x+y 1y
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